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ABSTRACT: Kinase selectivity plays a major role in the
design strategy of lead series and in the ultimate success of
kinase drug discovery programs. Although profiling com-
pounds against a large panel of protein kinases has become a
standard part of modern drug discovery, data accumulated
from these kinase panels may be underutilized for new kinase
projects. We present a method that can be used to optimize
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the selectivity profile of a compound using historical kinase profiling data. This method proposes chemical transformations based
on pairs of very similar compounds, which are both active against a desired target kinase and differ in activity against another
kinase. We show that these transformations are transferable across scaffolds, thus making this tool valuable to exploit kinase

profiling data for unrelated series of compounds.
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n recent years much research has been done in the area of

kinase inhibitors. Even though the numerous clinical
successes have proven that kinase inhibitors can be sufficiently
selective, achieving selectivity is still challenging.

Selectivity is often achieved by targeting specific inactive
states of the kinase, such as the DFG-out or the aC-helix-out
state."” These states did not evolve to recognize ATP and are
often sufficiently different across the kinome.® Selectivity can
also be increased by targeting specific subpockets such as the
hydrophobic pocket behind the “gatekeeper” residue or solvent
exposed residues outside the ATP binding site.**

Selectivity within a specific family of kinases is often critical
to the success of a project. For example, several pharmaceutical
companies have developed selective inhibitors within the JAK
family of kinases, which includes JAK1, JAK2, JAK3, and Tyk2.
However, for these kinases with highly similar binding sites, it is
very hard to achieve selectivity using a structure-based
approach.*™"!

Structure-based design is not optimal to discover certain
selectivity mechanisms that are driven by protein dynamic
effects or rearrangements of water networks. The energetics of
displacing waters is not well captured in the crystal structure
and is hard to predict. As a result, many selectivity mechanisms
are discovered by chance and often remain unexplained. For
example, Imatinib hits c-SRC with an affinity that is at least
2000-fold lower than that for ABL2, although the binding sites
of Abl2 and SRC are nearly identical even for the DFG-out
state.'”

Kinase profiling data often contain many compounds from
the same series. This makes it possible to discover chemical
changes that lead to better selectivity. For example, Figure 1
shows one compound (a) active on both KIT and ABL1 and
another (b) active on KIT only. Note that the two compounds
only differ by one chemical change (F — CHj).
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Figure 1. Chemical transformation proposed to increase selectivity for
KIT with respect to ABL1 (the two compounds were taken from the
database published by Metz et al.).

With more than 8000 K; and more than 600,000% inhibition
data points for kinases, the Roche internal kinase profiling data
is very extensive. However, many data are also available in the
public domain. For example, the data set published by Metz et
al.”® contains about 150,000 kinase inhibitory values, and the
Kinase SARfari data set,'* which is freely available from the
web, has more than 430,000 kinase bioactivity data points.
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Figure 2. Heat map for the 172 kinases in the Metz public panel and for the 400 kinases in the Roche kinase inhibitor profile database representing
the number of chemical transformations available for each pair of kinase. Darker colors reflect a higher number of compound pairs found, with white

indicating that no pair was found.

To use the information contained in these databases, we
developed a program that identifies chemical transformations to
achieve selectivity against a specific unwanted kinase while
maintaining activity for the target kinase. The method
presented has similarities with the concept of “matched
molecular pairs”>' and “activity cliffs”,'”'® which center the
analysis on pairs of molecules which are very similar (or have a
common substructure) but have a large change in activity. In
this paper we express binding affinities as pK; (inhibition
constant) and we consider active all compounds with pK; > 7
and inactive all compounds with pK; < S.

The purpose of the program is to generate a list of
compound pairs with the type of activity cliff shown in Figure 1.
The program first clusters compounds by molecular similarity.
Then it identifies pairs of very similar compounds within the
same cluster. Depending on the similarity threshold, the pairs
are separated by one (or rarely more) chemical transformation.

This type of approach is much faster than a maximal
common substructure (MCS) search method. In addition, it
can retrieve valuable pairs that would otherwise be excluded by
MCS. However, a similarity approach is sensitive to the
similarity threshold selected. Lowering the Tanimoto threshold
increases the number of pairs found to a point where the pair
list is too long and less meaningful.

The identified molecular pairs are valuable, especially when
the binding mode of the compounds compared is known. This
is the case for many public and in-house kinase inhibitors. If the
binding mode is known, the position of the chemical
transformation suggests where an analogous transformation
on a different series may also be useful to improve selectivity.

We illustrate this approach by using examples derived from a
public data set published by Metz et al."> which contains more
than 3800 compounds tested against 172 protein kinases.
Although this data set contains only a fraction of all kinase
inhibition data available within large pharmaceutical companies
such as Roche, its coverage is still good for illustration
purposes. Here we define coverage as the number of target/
undesired pairs with at least one chemical transformation
divided by the total number of pairs.

The heat map in Figure 2 shows the coverage for the Metz
data set and for the Roche data set, with darker colors
corresponding to more pairs of compounds found for a given
undesired kinase and target kinase. The heat map is based on
172 kinases for the Metz data set and on 400 kinases for the
Roche data set (1919 compounds)." Taking into account the
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full set of 517 kinases, the coverage is 2.5% for the Metz
database and 45% for the Roche database.

It should be noted that these results depend on the
Tanimoto similarity cutoff chosen for a pair (in this example,
we used 0.5). Although 0.5 is quite low and suggests that very
different structures might be treated as pairs, we found that this
is an acceptable threshold because useful pairs are retrieved also
at low Tanimoto similarity. The next section presents three case
studies based on different pairs of kinases. Since a similarity
cutoff of 0.5 produced a very long list of pairs, higher cutoffs
were used for practical reasons.

Case Study 1: CDC2 (Undesired Kinase)/CDC7 (Target
Kinase). Considering only pairs with Tanimoto similarity
>0.75, we retrieved 27 pairs of compounds (Supporting
Information Table 1) where one is active on both CDC2 and
CDC7, while the other is active only on CDC7 (target kinase).
The 27 pairs correspond to three different clusters, as shown in
Supporting Information Table 1. Even though no PDB
structure is available for either CDC2 or CDC7, the binding
modes can be predicted with reasonable certainty from other
protein kinases cocrystallized with ligands with the same or very
similar scaffolds (Figure 3). As shown in Figure 3, the binding
mode for each scaffold shows that the R-group that drives
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Figure 3. Two examples with chemical transformation proposed to
increase selectivity for CDC7 with respect to CDC2. The PDBs shown
suggest the binding mode for these compounds based on the binding
of their cocrystallized ligands.
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selectivity lies in the front pocket. The front pocket contains
flexible residues that interact with water molecules and that are
challenging to consider for predicting selectivity.

Case Study 2: LCK (Target Kinase)/EGFR (Undesired
Kinase). For this pair of kinases, we found examples where the
same chemical transformation leads to better selectivity in two
different scaffolds. Figure 4 shows the 3D superimposition of
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Figure 4. The chlorine atom leads to better selectivity for LCK with
respect to EGRF in two completely different scaffolds. The
superimposed structures were obtained by 3D molecular alignment
using MOE.

compounds active on both LCK and EGFR (left) and of
compounds active on LCK only (right). The chlorine atom in
the analogous position leads to LCK selectivity for the two
different scaffolds.

Case Study 3: CSFR1 (Target Kinase)/PDGFRA (Un-
desired Kinase). Setting CSF1R as target kinase and
PDGFRA as undesired kinase yielded 16 pairs with similarity
above 0.75, with some representatives shown in Figure 5. The
binding mode proposed here suggests that interactions in the
front pocket may drive selectivity between these two kinases.
Transformations in R1 show that a more bulky substituent
might be important for selectivity.

Although the pairs found may highlight differences that are
difficult to transfer to another scaffold, the concept to achieve
selectivity can be extracted and applied to a new scaffold. For
example, the pairs in Figure 5 suggest that bulkier substituents
tend to increase selectivity.

B CONCLUSIONS

Structure-based design is traditionally used to improve kinase
selectivity. However, chemical transformations that increase
selectivity are often found by chance, and in many cases the
mechanism remains unexplained.

The increasing amount of kinase profiling data contains a
vast number of nonobvious transformations that lead to
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Figure S. Transformations leading to higher selectivity for CSFR1
(over PDGFRA). The proposed binding mode is based on the crystal
structure 2WG], where the ligand is similar to the scaffold shown here.

improved selectivity, and data mining efforts may help to
discover these hidden design principles. The method we
propose may help to design more selective compounds by
suggesting chemical transformations—in the form of com-
pound pairs—that lead to improved selectivity with respect to a
specific undesired kinase.

Chemists routinely extract selectivity rules from various
series within a project. The method presented complements
this effort by systematically mining and analyzing large kinase
data sets.

The examples presented show that this method enables the
design of more selective compounds by extracting information
for different, but superimposable scaffolds. This is especially
useful for discovering nonobvious changes that increase
selectivity. The method we propose can capture these changes,
thereby complementing structure based design approaches for
kinase selectivity.

B EXPERIMENTAL PROCEDURES

K; values corresponding to more than 3800 compounds tested on 172
kinases were extracted from the kinase inhibitor database published by
Metz et al. A pipeline pilot protocol was developed to identify all
chemical transformations that cause at least a 100-fold drop in activity
against a kinase, while they leave the activity for the other kinase
substantially unchanged. The protocol retrieves the chemical trans-
formations, with the names of target kinase and undesired kinase; it
analyses all compounds within a cluster—the compounds in the Metz
database are already divided into clusters on the basis of their
structural similarity—and for each cluster extracts the n compound
pairs with a Tanimoto similarity higher than a selected threshold,
generally higher than 0.5. This similarity score was obtained by using
the Fingerprint Similarity NXN with Tanimoto as similarity coefficient
and ECFP_6 as descriptors. Lastly, the protocol implements a filter
that retains only pairs of compounds where one is active (K; > 7)
against both the target and the undesired kinase, while the other is
only active on the target kinase (K; > 7) but inactive on the undesired
kinase (K; < S). These thresholds can be modified in the program.
Because the compounds in each pair are very similar and belong to a
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common cluster, they contain a common substructure. It should be
noted that the number of pairs retrieved depends on the similarity
index chosen. For example, by limiting results to pairs with a similarity
index > 0.75, with respect to the 517 kinases, the Metz database would
have only 1% coverage and the Roche database only 22%.

B ASSOCIATED CONTENT

© Supporting Information

The pipeline pilot protocol in xml format, and the list of pairs
found for the three case studies. This material is available free of
charge via the Internet at http://pubs.acs.org.
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B NOTE ADDED AFTER ASAP PUBLICATION

This paper was published on the Web on March 14, 2012, with
an error in the Supporting Information. Changes were made to
the pipeline pilot protocol, to fix an error that caused the same
image for both columns, and to the PDF files, which contain
the output from the pipeline pilot protocol. The corrected
version was reposted on March 26, 2012.
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